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Transient Analysis of Microstrip Line
cm Anisotropic Substrate in
Three-Dimensional Space
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Avtracf — The recent development of i%fIC demands considerable atten-

tion to the anisotropy of substrates such as sapphire in order to both utilize

its characteristics and eliminate its, undesirable features. Anisotropic

materials usually have a three-dimensional structure, and yield complex

characteristics in wave propagation. Hence the analysis requires an exact

three-dimensional treatment using all electromagnetic field components.

Also, progress in high-speed pulsetechniquesdemandsanalysisin the time
domain.

This paper describes how the aniso~opy, with the permittivity tensor

involving off-diagonal elements, may be generally formulated by Bergeron’s

method. The formulation is discussed in the case of the propagation

characteristics for single and parallel strip lines on a sapphire substrate

with tilted optical axis. Furthermore, to show the distinctive influence of

anisotropy on the coupling property between lines, a parallel-line-@re

directional coupler on such a substrate is analyzed.

I. INTRODUCTION

T HE RECENT DEVELOPMENT of MIC demands

considerable attention to the anisotropy of substrates,

such as sapphire, regarding both utilization of its char-

acteristics and elimination of its undesirable effects. The

analysis of an electromagnetic field in a region including

such an anisotropic medium is necessary not only for a

rigorous treatment of medium characteristics, but also for

gaining information for improving the characteristics of

devices [1]–[3]. The structure of an MIC, consisting of a

strip conductor, a ground plane, and an inhomogeneous

substrate, imposes restrictions on the range of variation of

the characteristic impedance and propagation constant or

coupling property between lines. The anisotropic medium

would be utilized to ameliorate this disadvantage of the

microstrip structure [4], [5]. Also, in recent high-speed

pulse techniques, dispersive characteristics caused by a

small anisotropy of the substrate become a subject of

concern.

Anisotropic substrates demand an exact three-dimen-

sional treatment using all electromagnetic field compo-

nents. Furthermore, analysis of the propagation of a pulse

wave requires computation in the time domain. Transient

analysis of the electromagnetic field is useful not only in

clarifying the field response but also in providing informa-
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tion on the mechanism by which the distribution of the

elect romagnetic field in the stationary state is brought

about. As a time-domain vector analysis method for a

three-dimensional electromagnetic field, the FD–TD meth-

od proposed by Yee [6], [7] and the TLM method by Johns

[8], [9] are used. For the problems involving anisotropic

medium, the latter method has already been adopted [10],

[11 ]. But for both methods it is difficult to formulate cases

having tilted optical axes expressed by perrnittivity or

permeability tensor with off-diagonal elements. We have

proposed a method using an equivalent circuit of the

electromagnetic field formulated by Bergeron’s method,

referred to here as the present method [12] –[15]. In this,

the basic concept of the treatment of the condition of the

medium is expressed by lumped elements at each node in

the equivalent circuit. This treatment can be realized by

Bergeron’s formulation with the use of the voltage variable

and two current variables for two different directions at

each node. This feature is extended to the anisotropic

medium by use of the mutual coupling between currents

relating to the off-diagonal components in the permittivity

or permeability tensor [16].

In this paper the treatment of anisotropy by Bergeron’s

method is extended to the three-dimensional vector analy-

sis in the time domain for dielectric materials with a tensor

involving off-diagonal elements. Initially it is proved that

the equivalent circuit with the mutual coupling represents

anisotrop y with off-diagonal elements in the permittivit y

tensor. Next, the formulation is discussed by estimating

the impedance and effective dielectric constants for single

and parallel strip lines on a sapphire substrate as a func-

tion of a tilted angle. Lastly, to show the effect of aniso-

tropy on the coupling property between two lines, a paral-

lel-line directional coupler on such a substrate is analyzed,

and its characteristics are presented.

II. TREATMENT OF ANISOTROPIC MEDIUM

ln this paper, we treat the anisotropy [16], [17] of the

dielectric constant caused by tilt of an optical axis. In the

present method the medium conditions are expressed by

lumped elements at appropriate nodes. The off-diagonal

elements in the permittivity tensor of the dielectric sub-

strate demand the coupling of electric fields between dif-

ferent directions. The lumped circuit for those should be
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TABLE I
CORRESPONDENCE BETWEEN THE FIELD VARIABLES IN MAXWELL’S

EQUATION AND THE EQIJIVALENT CIRCUIT

iik

)k

—

)k

—

dielectric constant cO= E./2

permeabi1I ty [,”=u,,/2

polarlzal Ion Ac=~(,2’(!/2. Ad

conductivity G=(J/2. Ad

magnetization A 1.= U,, xmZ2 . A d

~-----o---–––~

Magnetic node

Maxwel 1’ a equations I Variablea

diolcclric constant 1,:=6./2

rwmcab i I i lY c:=lf o/2

map,notlzatlon A~*=u OZn/2 . A d

magnet ic current loss (;*= u */2 . A d

polarization Al, *=e,, z(>/2. Ad

Fig. 1. Arrangement of nodes around .41

given at a node in which either of the coupled electric field

components exists. Such a condition is satisfied at the

magnetic node in which the electric fields correspond to

the current variables. Therefore, given the duality of circuit

variables, the diagonal and off-diagonal components of the
dielectric constant are expressed by self-inductance and

mutual inductance, respectively.

In this section we prove that the equivalent circuit

consisting of inductance with mutual coupling at magnetic

nodes represents the electromagnetic wave equation in the

anisotropic dielectric medium. We assume coupling be-

tween the electric fields Ey and EX, and use circuit vari-

ables as shown in Table I. Fig. 1 shows the arrangement of

nodes around the Al node in which the voltage variable VY

corresponds to the electric field Ey. Fig. 2 shows details of

nodes A, B, and C. At the B nodes, lumped inductances

involving mutual coupling give the property of anisotropic

dielectric constant. Central difference equations are de-

rived at all nodes Bl, B2, and Cl, Cz that are adjacent to

node Al as follows;

(la)

(lb)

(lC)

(id)

(le)

(if)

(lg)

(lb)

where Ax, A y, and A z are the lattice intervals in the x, y,

and z directions, respectively, and are equal to the con-

stant value Ad. CO* corresponds to the free-space perme-

ability p ~ shown in Table I, and Of denotes d/d t for

simplicity. In the following equations, for simplicity dX,

d,, and d= also denote i?/dx, d/dy, and il/dz, respec-
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ii,,

Fig, 2. Details of nodes A, B, and C’.

tively. Negative signed braces in (lc) and (Id) are derived

from the opposite sign in the corresponding variables

between the B and D nodes.

Next, the voltages ~“, VX* at Bl, Bz and Cl, Cz are

expressed by current components 1=1,122 and ~xl, ~xz at

A ~, as shown in Fig. 2. The voltage at BI is expressed as

follows by using ilXV,* = – Lj dtIX*:

where V.* ( B12) is the voltage drop at an inductance. At

other no-des, the following relations are also formulated in

the same manner.

VX*(C1) = IZ1(A1)+-L;Aza,~2(c12)

+ ALjYAz i111J(C12) (2C)

Substituting (2) into (1) gives

2{- I:(B2,)-I~(B2,)} (3d)–2Ay2M&C~d,

y,(~4)–~p(Al)

= 2Az CJ dfI:1(A1)+2Az2C$L~ t3;I~(C12)

+2 Az2AL:YC~ tl;IZj(C12) (3e)

yy(Al)–q’(A5)

= 2Az C: t?,lz2(A1) -2 Az2C7L~ d;l~(C,l)

–2Az2AL~, C: i3;I~(C21) (3f)

~(E1)–~(E2)

= 2Ay C~ 8,121(A1)+2AYAZC$L8 ~~~z3(C12)

+2 AyAz AL-&C~ d~1~(C12) (3g)

~(E3)–lZ(E4)

= 2 AyC/ 13,1,2(A1)-2 A.YAz CFL$ ~:~3(c21)

–2 AyAz ALJYCO* 8;1,?(CZ1). (3h)

Assuming that Ax = Ay = Az = Ad, to satisfy the continu-

ity of currents IZ1, IZ2, IX1, and IX2 at the Al node, which

are included in the first term of the right side of each

equation in (3), the operation (3a) – (3b) + (3c) – (3d) + (3e)

– (3f) + (3g) – (3h) is performed to give

{~(Az)+~(As)-2~(A,)}

+{y. (A4)+~y(A5) -2~v(A1)}

+{– VY(D1)+ KY(D, )+ V(EI)– L(E3)}

+{– VY(D~)+ VX(DZ)+K(E&~(EZ)}

=4AdC~ d,{~xl– 1.2+ ‘.l– ~,2}lA,

+4 Ad’ CJL; df{IJ(B12)+I;(B21)

+Z; (C,2)+I:(C21)}

+4 Ad AL&C/~~{ I~(B12)+I~(B21)

+~,y(c12) +~,T(c21)}

+4 Ad2MJ~.C; d;{– I:(BIJ-:,*(B14)

+2 Ax A,vM:C{ d,z{ – I}*(B13) – IJ*(B14)} (3a) ‘],*(&-~j*(B 24)}. (4)
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The first term in the right hand side of (4) is eliminated by

applying Kirchhoff’s first law at the Al node. Dividing

both sides by 4 Ad 2 and allowing Ad to approach zero, the

left side converges to v 2 using the divergence theorem

under a no-space-charge condition in volume VO in Fig. 2:

left side of (4) = v 2~1~,. (5a)

Also, the right side is transformed as follows:

right side of (4)

= 4C~L~ d;{ 1.~(Blg) + ~.:(B2,)

+l,; (c12)+I; (c21)}/4

+4 AL;,c& 8:{ IJ(B12)+ IJ(B21)

+~zl(c12) +~zi(c21)}/’4

+4M;C; a;{ – I;(B13)- I;(B14)

Here as Ad approaches zero all variables approach the

values at the center node Al:

82V
(5b) = 4C’~L*-#

Al

a2(– I;)
+ 4CO*MY:.

dt2
(6)

between El and B2, namely Al.

For generality we omit the position notation Al. As a

result, (5a) and (6) yield the wave equation,

6’gq a2(–1:)
V 2VY= 4Co*L*— at2

+ 4C~MY~
at2 “

(7)

From correspondence of variables, VYIA = EY, – [~ I~ = EX,

L; = &o/2, CO* = ~o/2, L* = L~ + AL~Y = 8.(1 + XY,)/2

= &oEyy/z, and MY:= EO&y. /2 are derived. Therefore, (7)

represents the following electromagnetic wave equation in

the anisotropic medium:

J 2EY a2EX
v 2EY = eoeYYpo— + &o&yxPo~ “

at2
(8)

At other nodes in which the coupling between different
field components occurs, the same formulations may be

derived.

We omit the description of Bergeron’s formulation be-

cause the approximation of inductance and mutual cou-

pling in the time domain by the trapezoidal rule is similar
to that for capacitance [12].

III. ANALYTICAL RESULTS AND DISCUSSION

The anisotropy used in this analysis is represented

the following dielectric tensor:

37

by

where

H&=&o O E7 O . (9)

O 0 eZ

In (9), ef and en are the principal optical axes of the

relative dielectric constants of the substrate. The $q coor-

dinate system may be tilted with respect to the xy coordi-

nate system by an angle 13,as shown in Fig. 3. Using the

coordinate transformation, the permittivity tensor e in the

xyz coordinate system is given by

II

&xx eyx o

E= &o eyx Eyv O (lo)

o 0 e=

e = .5tcos26 + evsin20 (ha)

e~=(ev-e~)sindcosd (llb)

&.YY= etsin28 + EVCOS28. (llC)

A. Characteristic Impedance and Effective

Dielectric Constant

In order to verify the validity of the treatment of ani-

sotropy in the present method, we calculated the character-

istic impedance Z and effective dielectric constant e~ff of a

microstrip line and parallel strip lines on the anisotropic

substrate as a function of tilt angles. The relationship

between the tilted principal axes EC,&v of dielectric con-

stant and coordinate axes x, y is shown in Fig. 3. Fig. 3(a)

and (b) shows the cross sections of microstrip line and

parallel microstrip lines, respectively. The strip and ground

conductor are assumed to have infinite conductivity. The

dimensions of Fig. 3(a) are W/H= 0.5, a/H= 10, and

b/H = 3.5, and of Fig. 3(b) are W/H= 1.0, S/H= 0.5,

a/H = 10, and b/H= 3.5. We consider sapphire as the

anisotropic substrate, and assume that E$, en and e= are

9.4, 11.6, and 9.4, respectively. In this analysis, the height

of the substrate H = 4 Ad, and one period of the applied

sinusoidal wave is T = 213 At, where At I is the time inter-

val between iterations. When 1 Ad is” assumed to be 0.15

mm, the frequency is f =18.78 GHz, and the height of the

dielectric substrate becomes H= 0.6 mm. If all space is
filled with dielectric (e, = 11.6), the wavelength A ~ be-

comes 31.27A d. It is generally known that the number of

divisions of the period and the wavelength should be more

than ten in the difference formulation. Therefore, the

numbers of divisions for the period and wavelength in this

analysis are sufficient for good resolution in time and

space. In this condition, since the dimension of each part

of the transmission line structure is very small compared

with the guide wavelength ? ~, a quasi-static field condition

giving TEM wave propagahon may be assumed.

The characteristic quantities are evaluated as follows in

this analysis. The definition of characteristic impedance of
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(h)

Fig. 3. &q system coordinate tilted with respect to .~y coordinate system
by an angle 0. (a) Cross section of mlcrostrip line. (b) Cross section of

parallel mlcrostnp lines,

:701==-47””i
60~5.4

o 30 90
~(degr~j)

Fig 4 Characteristic impedance and effective dlelectnc constant of the
microstrip line as a function of tilt angle.

microstrip is

Z=2PZ/I; (12)

and of two parallel strip lines is

Z = P, /1; (13)

where PZ is the time average of the Poynting vector propa-

gating in the z direction, and 10 is the magnitude of the

conduction current in one strip line. The Poynting vector

propagating in the z direction is given by EX x HY and

E, X ( – Hy). Hence P= is found by integrating these quan-

tities in the xy cross section and by averaging the result

over one period. 10 can be found by a line integral of the

magnetic field along the integration path around the strip

conductor. The effective dielectric constants may be found

from the ratio of the free-space wavelength A ~ to the guide

wavelength ~ ~. Fig. 4 shows computed results of the

characteristic impedance and effective dielectric constant

of microstrip line as a function of tilt angle. The symbols

❑,. present characteristic impedance and effective dielec-

6om8”2
- 50-

Q

N
z’40- 00 , ~6.6

[

30 I I ‘ 5.8
0 90

~“(deg re6e0)

Fig, 5. Et en- and odd-mode charactermtlc Impedance and effectwe

dielectric constant of the parallel microstrip lines as a function of tilt
angle

tric constant by the present method, and the curves show

analytical results [1]. In [1] the analyzed subject is shielded,

but the position of the shield is very far from the strip line,

so our results, agree well with the analytical ones. The

principal electric field of the propagating wave in the

single stripline is EY. When O = 0°, the q axis coincides

with the y axis, so Ceff is affected mainly by ET. e~ff

decreases and Z increases as e< becomes more effective

through an increase of 6 by rotating the anisotropic prin-

cipal axis. Fig. 5 shows computed results of the even- and

odd-mode characteristic impedances ZO=, ZOO and the ef-

fective dielectric constants E,ff,even and e~ff,O~~ of parallel

microstrip lines as a function of tilt angle. The symbol .

denotes the results by the present method, and the curves

indicate the analytical results [1]. In the case of the even

mode, the fundamental electric field of the propagating

wave is EY, so that &eff,evendecreases and ZOe increases
with d increasing, as in the case of the single strip line

shown in Fig. 4. On the other hand, for the case of the odd

mode, between the strip lines there exists a notable x-

directed component of the electric field in the propagating

wave; hence the variation of ZOO and eeff,O~~with increas-

ing @is not so evident as in the case of the even mode. But

the variation of each curve with 0 has the same tendency

as that of the even mode. Thus the analytical curves and

our results agree within a few percent, and the validity of

treating anisotropy by the present method is confirmed.

B. Time Dependence with O Variation of Propagation of

Pulse Waves

To demonstrate the typical variation of propagation

characteristics as a function of the tilt angle 0, we present

the time variation of the propagation of the pulse wave for

single strip line. The values of the relative dielectric con-

stants in the principal axes of the anisotropic substrate, e$,

E~ and .s=, are chosen to be 1.75, 2.5, and 1.75, respectively.

The large ratio of Cf to &w gives a distinct change in the
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0.0
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20

0 20 40 60 80 100 2/Ad

(a)
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1.0
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0.0
0 20 40 60 80 100 Z/Ad
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0.0
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(d)
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Fig 6 Time variation of pulse wave in microstrip line at 8 = OO. Fig 7 Time variation of pulse wave in microstrip lme at 8 = 45°.
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0.5

0.0
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1
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(c)

t= L,+4. OT ~,~
20

—
EY -—

1.0- —-

o.5-

0 20 40 60 60 100 z/Ad

(d)

Fig. X. Time variation of pulse wave in microstrip line at O = 90°.

k, j.p.t free hwndary

6Ad
4*d

0 @ 100.d dielectric wbstra te

Fig. 9. Parallel-line-type directional coupler.

(e)

Fig. 10. Time variation of spatial distribution of electric field E, in
directional coupler at O = 0°,

propagation velocity of the pulse wave. The pulse shape is

a positive half-period of a sinusoidal wave having T = 71 At.

Figs. 6–8 clearly show an increasing tendency of propa-

gation velocity with increasing tilt angle, in agreement with

the physical reasoning described in the previous section.

The variable to in the figures is an initial time at which the

input wave is applied.
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Fig. 11. Time variation of spatial distribution of electric field E, in

directional coupler at 8 = 45°.
Fig. 12. Time variation of spatial distribution of electric field EY in

directional coupler at B = 90°.

C. Characteristics of the Directional Coupler respectively. The strip and ground conductor are assumed

In order to show the effect of anisotropy on the coupling to kave infinite conductivit~. There is an anisotropic sub-

between the lines, a parallel-line-type directional coupler is strate with thickness 4 Ad on the ground plane, and strip

analyzed and its characteristics are presented as a function conductors with width 6 Ad form the directional coupler.

of the tilt angle of the anisotropic axis. Fig. 9 shows the The upper region is an air layer with thickness 6 Ad. The

directional coupler. The dimensions in the x, y, and z upper and side boundary of the analyzed region is ap-

directions of the analyzed region are 40, 10, and 100 Adj proximate by a free boundary condition. The fundamen-
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tal property of the directional coupler taken in this analy-

sis is that an input at port 1 gives an output at ports 2 and

4, and no output at port 3. The anisotropic substrate is

assumed to be sapphire. The frequency of the input

sinusoidal wave and the distance between ports 2 and 3 are

adjusted to give maximum isolation for port 3 at d = 0°.

The period of the input wave is 256 At and “1” in Fig. 9 is

20 Ad. Figs. 10, 11, and 12 show the time variations of the

spatial distribution, that is, the envelope of the maximum

value at each point of the electric field EY for /3= 0°, 450,

and 90°, respectively. The expressions in the figures are the

time intervals of a half-period used for finding the maxi-

mum value at each point to provide the spatial distribution

rather than the instantaneous values. As the dimensions of

each part of the coupler are very small compared with the

guide wavelength, and the matching condition is realized

at each port, the distributions seem to be from a pulse

source. These figures look almost the same, but show the

fine changes of the directional characteristics as a function

of the tilt angle. Also, the time variation of each figure

indicates the process by which the steady-state characteris-

tics are obtained. The decrease of isolation is due to the

decrease of eeff and the change of relative values between

the Zo. and ZOO, as shown in Fig. 5. In this case, the CPU
time is about 22 seconds for 700 iterations in the time

domain using the HITACHI S-810/10 Super Computer at

the Hokkaido University Computing Center.

IV. CONCLUSIONS

The fundamental formulation of an anisotropic medium

using a perrnittivity tensor with off-diagonal terms is de-

scribed for a three-dimensional transient analysis by

Bergeron’s method. The variation of the impedance and

effective dielectric constant with the tilt angle (l is dis-

cussed to verify the validity of the formulation. Further-

more, to demonstrate the effect of anisotropy on the

coupling property between lines, a parallel-stripline-type

directional coupler is simulated.

In later work the treatment of tilting the anisotmpic axis

will be generalized. In addition to the directional coupler,

other MIC devices will be analyzed and field variations

will be simulated in the time domain to obtain, the propa-

gation characteristics of the high-speed pulse.
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